Structural and dynamic characterization of Li(12)Si(7) and Li(12)Ge(7) using solid state NMR.

نویسندگان

  • Sven Dupke
  • Thorsten Langer
  • Rainer Pöttgen
  • Martin Winter
  • Hellmut Eckert
چکیده

Local environments and lithium ion dynamics in the binary lithium silicide Li(12)Si(7), and the analogous germanium compound have been characterized by detailed (6)Li, (7)Li, and (29)Si variable temperature static and magic-angle spinning (MAS) NMR experiments. In the MAS-NMR spectra, individual lithium sites are generally well-resolved at temperatures below 200K, whereas at higher temperatures partial site averaging is observed on the kHz timescale. The observed lithium chemical shift ranges of up to 60 ppm indicate a significant amount of electronic charge stored on the lithium species, consistent with the expectation of the extended Zintl-Klemm-Bussmann concept used for the theoretical description of lithium silicides. Furthermore the strongly diamagnetic chemical shifts observed for the lithium ions situated directly above the five-membered Si(5) rings suggest the possibility of aromatic ring currents in these structural elements. This assignment is confirmed further by (29)Si{(7)Li} CPMAS-heteronuclear correlation experiments. The (29)Si MAS-NMR spectra of Li(12)Si(7), aided by 2-D J-resolved spectroscopy, are well suited for differentiating between the individual sites within the silicon framework, while further detailed connectivity information is available on the basis of 2-D INADEQUATE and radio frequency driven recoupling (RFDR) spectra. Variable temperature static (7)Li NMR spectra reveal the onset of strong motional narrowing effects, illustrating high lithium ionic mobilities in both of these compounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation and Structural Characterization of Alkali and Alkaline Earth Metal Salts with Synthetic Non Cyclic Ionophores

In the present study, an investigation on the complex formation between mono- and divalent metal ions (Na+, K+, Li+ and Mg2+) in the form of salt with different podands using various solvents has been carried out.  Isolated complexes were characterized by different spectroscopic techniques viz. IR, NMR and elemental analysis. On the basis of ...

متن کامل

Theoretical Assessment of the First Cycle Transition, Structural Stability and Electrochemical Properties of Li2FeSiO4 as a Cathode Material for Li-ion Battery

Lithium iron orthosilicate (Li2FeSiO4) with Pmn21 space group is theoritically investigated as a chathode material of Li-ion batteries using density functional theory (DFT) calculations. PBE-GGA (+USIC), WC-GGA, L(S)DA (+USIC) and mBJ+LDA(GGA) methods under spin-polarization ferromagnetic (FM) and anti-ferromagnetic (AFM) procedure are used to investigate the material properties, includin...

متن کامل

Efficient one-pot synthesis and characterization of 13-Acetyl-9-methyl-11-oxo-8-oxa-10,12-diazatricyclo [7.3.1.0^2,7] trideca-2,4,6-triene

An efficient and environmentally friendly procedure for one-pot synthesis of 13-acetyl-9-methyl-11-ox-8-oxa-10,12-diazatricyclo [7.3.1. ] trideca-2,4,6-triene from salicylaldehyde, acetylaceton and urea via Biginelli condensation and intramolecular Michael-addition by using magnesium bromide as an expensive and easily available catalyst under solvent-free condition is desired. The structural el...

متن کامل

Miniature all-solid-state heterostructure nanowire Li-ion batteries as a tool for engineering and structural diagnostics of nanoscale electrochemical processes.

Complex interfacial phenomena and phase transformations that govern the operation of Li-ion batteries require detailed nanoscale 3D structural and compositional characterization that can be directly related to their capacity and electrical transport properties. For this purpose, we have designed model miniature all solid-state radial heterostructure Li-ion batteries composed of LiCoO2 cathode, ...

متن کامل

Local and Average Structural Changes in Zeolite A upon Ion Exchange

The infamous ‘structure–property relationship’ is a long-standing problem for the design, study and development of novel functional materials. Most conventional characterization methods, including diffraction and crystallography, give us a good description of long-range order within crystalline materials. In recent decades, methods such as Solid State NMR (SS NMR) are more widely used for chara...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Solid state nuclear magnetic resonance

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2012